python - Camera callibration openCV from image/pixel coordinates to world/mm -


using single camera , chessboard should possible create callibration file used afterward convert image coordinates in pixels world coordinates in mm @ least when object placed on same plane (e.g. when camera fixed above table on image placed several dimensions should inspected)

from previous posts [2] learned both intrinsic , extrinsic camera properties should analyzed. wrote python programms below.

the question is: how use these matriches convert image x , y coordinate world coordinates? hope share of his/her code!

first determine intrinsic parameters:

import numpy np import cv2 import parameters p  import os import time import pickle #https://stackoverflow.com/questions/6568007/how-do-i-save-and-restore-multiple-variables-in-python  print "switch off auto focus of camera, take multiple pictures of chessboard of properties described in parameters.py , save images in product_pictures before running programm"  start_time = time.time()  # termination criteria criteria = (cv2.term_criteria_eps + cv2.term_criteria_max_iter, 30, 0.001)  # prepare object points, (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0) objp = np.zeros((p.chessboardmin*p.chessboardmax,3), np.float32) objp[:,:2] = np.mgrid[0:p.chessboardmax,0:p.chessboardmin].t.reshape(-1,2)  # arrays store object points , image points images. objpoints = [] # 3d point in real world space imgpoints = [] # 2d points in image plane.  image_folder_dir = 'product_pictures_intrinsic_camera_callibration\\' # sequentially load multiple images            image_listing = os.listdir(image_folder_dir)  image_listing = os.listdir(image_folder_dir)   print image_listing image_name in image_listing:     if image_name.endswith(".jpg"):         img = cv2.imread(image_folder_dir+image_name)         gray = cv2.cvtcolor(img,cv2.color_bgr2gray)          print "analyzing image = " +str(image_name)         #cv2.imshow('gray',gray)          # find chess board corners         ret, corners = cv2.findchessboardcorners(gray, (p.chessboardmax,p.chessboardmin),none)         cv2.drawchessboardcorners(img, (p.chessboardmax,p.chessboardmin), corners,ret)         img_dir = 'corners_identified/sude1.0_callibration_corners_' + str(time.strftime("%y%m%d%h%m%s"))  + ".jpg"   # create name image time stamp            cv2.imwrite(img_dir, img)         show_picture=image_name         #cv2.namedwindow('img', cv2.window_normal)         #cv2.imshow('img',img)         #cv2.waitkey()         6         # if found, add object points, image points (after refining them)         if ret == true:             print 'chessboard identified'             objpoints.append(objp)             corners2=cv2.cornersubpix(gray,corners,(11,11),(-1,-1),criteria)             imgpoints.append(corners) #should corners 2 use subpix              # draw , display corners             #cv2.drawchessboardcorners(img, (p.chessboardmax,p.chessboardmin), corners,ret)             #cv2.imshow('img',img)             #cv2.waitkey()           else:             print "no chessboard identified ... make sure number of intersecting squares correctly defined in parameters.py" cv2.destroyallwindows()   ret, mtx, dist, rvecs, tvecs = cv2.calibratecamera(objpoints, imgpoints, gray.shape[::-1],none,none) #mtx intrinsic camera mtx anti fish eye print "camera callibration performed" #save rectified image img = cv2.imread(image_folder_dir+show_picture) #cv2.imshow('first analyzed img before',img) #cv2.waitkey() h,  w = img.shape[:2]  newcameramtx, roi=cv2.getoptimalnewcameramatrix(mtx,dist,(w,h),0,(w,h)) #http://ksimek.github.io/2013/08/13/intrinsic/ # if dist has negative values means there distortion, take picture higher distance http://answers.opencv.org/question/28438/undistortion-at-far-edges-of-image/  # undistort dst = cv2.undistort(img, mtx, dist, none, newcameramtx)  print "optimal new camera matrix , undistort matrix defined"  # save calibration file open('intrinsic_calibration_file.pickle', 'w') f:  # python 3: open(..., 'wb')     pickle.dump([newcameramtx, roi, rvecs, tvecs, dst,dist], f)  # getting objects verify correct save open('intrinsic_calibration_file.pickle') f:  # python 3: open(..., 'rb')     g, h, i, j, k, l = pickle.load(f)  print "new camera matrix = " + str(g) print "roi = " + str(h) + " if = [0,0,0,0] distortion not possible correct --> change zoom settings" print "rvecs calibrate camera = "+ str(i) print "tvecs calibrate camera = "+ str(j) print "dst = " +str(k) print "dist = " +str(l)  end_time = time.time() print "duration = " + str(start_time-end_time) + " seconds"` 

and extrinsic parameters:

import numpy np import cv2 import parameters p  import os import time import pickle   print "determine first intrinsic camera settings"  print "take 1 picture of chessboard of paramters defined in parameters.py same settings determining instrinsic camera settings , position chessboard product placed"  start_time = time.time()  # getting intrinsic camera properties  open('intrinsic_calibration_file.pickle') f:  # python 3: open(..., 'rb')     newcameramtx, roi, rvecs, tvecs, dst, dist = pickle.load(f)  # termination criteria criteria = (cv2.term_criteria_eps + cv2.term_criteria_max_iter, 30, 0.001)  #determine corners of chessboard" imgpoints = [] # 2d points in image plane.  image_folder_dir = 'product_pictures_extrinsic_camera_callibration\\' # sequentially load multiple images            image_listing = os.listdir(image_folder_dir)  image_listing = os.listdir(image_folder_dir)   print image_listing image_name in image_listing:     if image_name.endswith(".jpg"):         img = cv2.imread(image_folder_dir+image_name)         gray = cv2.cvtcolor(img,cv2.color_bgr2gray)          print "analyzing image = " +str(image_name)         #cv2.imshow('gray',gray)        # cv2.waitkey(500)                     # find chess board corners         ret, corners = cv2.findchessboardcorners(gray, (p.chessboardmax,p.chessboardmin),none)         cv2.drawchessboardcorners(img, (p.chessboardmax,p.chessboardmin), corners,ret)         img_dir = 'corners_identified/sude1.0_callibration_corners_' + str(time.strftime("%y%m%d%h%m%s"))  + ".jpg"   # create name image time stamp            cv2.imwrite(img_dir, img)         show_picture=image_name         #cv2.namedwindow('img', cv2.window_normal)         #cv2.imshow('img',img)         #cv2.waitkey()         6         # if found, add object points, image points (after refining them)         if ret == true:             print 'chessboard identified'             corners2=cv2.cornersubpix(gray,corners,(11,11),(-1,-1),criteria)             imgpoints.append(corners) #should corners 2 use subpix              # draw , display corners             #cv2.drawchessboardcorners(img, (p.chessboardmax,p.chessboardmin), corners,ret)             #cv2.imshow('img',img)             #cv2.waitkey()          else:             print "no chessboard identified ... make sure number of intersecting squares correctly defined in parameters.py"  cv2.destroyallwindows()  newimgpoint=[] newimgpoint.append([imgpoints[0][36][0][0],imgpoints[0][36][0][1]]) newimgpoint.append([imgpoints[0][0][0][0], imgpoints[0][0][0][1]])#p.chessboardmin-1][0][0],imgpoints[0][p.chessboardmin-1][0][1]]) newimgpoint.append([imgpoints[0][47][0][0],imgpoints[0][47][0][1]])#p.chessboardmin*(p.chessboardmax-1)][0][0],imgpoints[0][p.chessboardmin*(p.chessboardmax-1)][0][1]]) newimgpoint.append([imgpoints[0][10][0][0], imgpoints[0][10][0][1]])#p.chessboardmax*p.chessboardmin-1][0][0],imgpoints[0][p.chessboardmax*p.chessboardmin-1][0][1]]) print "outer corner image coordinates=" +str(newimgpoint)    newobjp=[] newobjp.append([0.0,0.0,0.0]) newobjp.append([(p.chessboardmin-1)*p.chessboarddistance*1.0,0.0,0.0]) newobjp.append([0.0,(p.chessboardmax-1)*p.chessboarddistance*1.0,0.0]) newobjp.append([(p.chessboardmax-1)*p.chessboarddistance*1.0,(p.chessboardmin-1)*p.chessboarddistance*1.0,0.0])  print "outer object coordinates=" +str(newobjp)         rvec, tvec, inliers = cv2.solvepnp(np.array(newobjp), np.array(newimgpoint), newcameramtx , dist)#check volgorde van return, wellichy]t eerst trou or false rotmat = cv2.rodrigues(rvec) # should rvec   # save calibration file open('extrinsic_calibration_file.pickle', 'w') f:  # python 3: open(..., 'wb')     pickle.dump([rvec,tvec,rotmat], f)  # getting objects verify correct save open('extrinsic_calibration_file.pickle') f:  # python 3: open(..., 'rb')     g, h, = pickle.load(f)  print "rvec = "+ str(g) print "tvec = "+ str(h) print "rodrotmat = "+ str(i)` 

and parameters.py file

'"""camera callibration""" chessboardmax = 6 chessboardmin = 8 chessboarddistance = 35 # size of chessboard squares in mm' 


Comments

Popular posts from this blog

Is there a better way to structure post methods in Class Based Views -

performance - Why is XCHG reg, reg a 3 micro-op instruction on modern Intel architectures? -

c# - Asp.net web api : redirect unauthorized requst to forbidden page -